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Abstract

A numerical study is made on fully developed bifurcation structure and stability of combined free and forced

convection in a rotating curved duct of square cross-section. The solution structure is determined as the variation of a

parameter indicating the magnitude of buoyancy force. Steady solution structure is very complicated. Flow and

temperature fields on various solution branches are identified to be symmetric/asymmetric multi-cell patterns. Dynamic

responses of multiple solutions to finite random disturbances are examined by direct transient computation. Five types

of physically realizable solutions are identified numerically. They are stable steady 2-cell solution, stable steady multi-

cell solution, periodic oscillation, chaotic oscillation and symmetry-breaking oscillation led by sub-harmonic bifurcation

(period doubling). Among them, three kinds of stable steady solutions are found to co-exist within a range of parameters.

In addition, temporal periodic and chaotic oscillations can also co-exist in another range of parameters. Furthermore,

sub-harmonic bifurcation is identified to be another route to chaos. Spectral analysis is used to demonstrate the presence

of additional frequencies for the case of sub-harmonic bifurcations. Results show that symmetry-breaking oscillation

driven by sub-harmonic bifurcations appear to be identical with the mode observed in Lipps [J. Fluid Mech. 75 (1976)

113], McLaughlin and Orszag [J. Fluid Mech. 122 (1982) 123], and Gollub and Benson [J. Fluid Mech. 100 (1980) 449]

for problem of free convection between flat horizontal plates.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

We study fully-developed multiplicity and dynamic

responses of multiple solutions numerically by finite-

volume/Euler–Newton continuation for mixed convec-

tion in ducts of square cross-section with streamwise

curvature, spanwise rotation in either positive or nega-

tive direction, and wall heating/cooling (Fig. 1 with (R,

Z, /) as the radial, spanwise and streamwise directions,

respectively). A positive rotation gives raises to a Cori-

olis force in the cross plane (RZ-plane) directed along

positive R-direction and vice versa.

There are a host of areas where such flows and

transport phenomena are of practical importance and

where relevant issues are raised. Cooling ducts of ro-

tating power machinery such as gas/steam turbines and

electric generators, rotating heat exchangers represent

some examples for flow and heat transfer in rotating

curved ducts. In order to calculate the pumping power

needed for such devices, it is important to know the

pressure drop in rotating curved ducts. Because sec-

ondary flows can enhance heat and mass transfer,

knowledge of magnitude of this effect in different ranges

of operating parameters is important in designing and

operating these devices. To avoid or reduce the flow-

induced vibration and noise, we need to know when
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temporal oscillation appears. The present work can ac-

quire a better understanding of these practical issues.

Early works on rotating curved duct flows were

constrained to two simplified limiting cases with strong

or weak rotations. Ludwieg [4] developed a solution

based on a momentum integral method for the isother-

mal flow in a square duct with a strong spanwise rota-

tion. Miyazaki [5,6] examined the mixed convection in a

curved circular/rectangular duct with spanwise rotation

and wall heating by a finite difference method. Because

of the convergence difficulties with the iterative method

used, Miyazaki�s work was constrained to the case of

weak curvature, rotation and heating rate. As well, all

the works employ a steady model for fully developed

laminar flow with a positive rotation of the duct. Since

the solution is only for the asymptotic cases, secondary

flow revealed by these early works consists of only one

pair of counter-rotating vortices in the cross-plane. The

interaction of secondary flow with pressure-driven

streamwise flow shifts the location of maximum

streamwise velocity away from the center of duct and in

the direction of secondary velocity in the middle of duct.

More comprehensive studies have been made in re-

cent years by Wang and Cheng [7] and Daskopoulos and

Lenhoff [8] for a circular tube, Matsson and Alfredsson

[9,10] and Guo and Finlay [11] for a high-aspect-ratio

rectangular duct, and Wang and Cheng [12,13], Selmi

et al. [14] and Selmi and Nandakumar [15] for the square

and rectangular ducts with a low-aspect-ratio. All the

works are for steady fully developed flows. Wang and

Cheng [7] developed an analytical solution for rotating

curved flow with effect of heating or cooling that allows

analyzing the solution structure. Detailed flow structures

and heat transfer characteristics were examined numer-

ically by Wang and Cheng [13]. The rotating curved

flows were visualized using smoke injection method by

Wang and Cheng [12]. Daskopoulos and Lenhoff [8]

made the first bifurcation study numerically under the

small curvature and the symmetry condition imposed

along the tube horizontal central plane. Matsson and

Alfredsson [9] presented the first and comprehensive

linear stability analysis. Matsson and Alfredsson [10]

reported an experimental study, by hot-wire measure-

ments and smoke visualization, of the effect of rotation

on both primary and secondary instabilities. Using a

linear stability theory and spectral method, Guo and

Finlay [11] examined the stability of streamwise oriented

vortices to 2-D, spanwise-periodic disturbances (Eck-

haus stability). Detailed bifurcation structure and linear

stability of solutions was determined numerically by

Selmi et al. [14] and Selmi and Nandakumar [15] without

imposing the symmetric boundary conditions.

It is the relative motion between bodies that deter-

mines the performances such as friction and heat

transfer characteristics. Duct rotation introduces both

centrifugal and Coriolis forces in the momentum equa-

tion describing the relative motion of fluids with respect

to duct. For isothermal flows of a constant property

fluid, the Coriolis force tends to produce vorticity while

centrifugal force is purely hydrostatic, analogous to

Earth�s gravitational field [13]. When a temperature-

induced variation of fluid density occurs for non-iso-

thermal flows, both Coriolis and centrifugal-type

buoyancy forces could contribute to the generation of

vorticity [13]. These two effects of rotation either en-

hance or counteract each other in a non-linear manner

depending on the direction of duct rotation, the direc-

Nomenclature

a duct width/height

De Dean number

Dk modified Dean number

L1 dimensionless variable indicating the effect

of rotation

p dimensionless pressure

Pr Prandtl number of the fluid

Rc curvature radius

Re Reynolds number

r, z dimensionless coordinates

R, Z, / coordinates

u, v, w dimensionless velocity components in direc-

tions of R, Z, and /

Greek symbols

h dimensionless temperature of the fluid

r curvature ratio of the channel

s dimensionless time

wmax maximum of absolute values of secondary

flow stream function

Fig. 1. Physical problem and coordinate system.

614 T. Yang, L. Wang / International Journal of Heat and Mass Transfer 46 (2003) 613–629



tion of wall heat flux and the flow domain. As well,

buoyancy force is proportional to square of the rotation

speed while Coriolis force increases proportionally with

the rotation speed itself [13]. Therefore, the effect of

system rotation is more subtle and complicated and

yields new, richer features of flow and heat transfer in

general, bifurcation and stability in particular, for non-

isothermal flows. While some of such new features are

revealed by recent analytical and numerical works [7,13],

there is no known study on bifurcation and stability of

mixed convection in rotating curved ducts.

We note that all previous analytical/numerical studies

of stability are limited to linear stability and some spe-

cial disturbances. While linear stability analysis is effi-

cient in terms of the computation efforts required, it

suffers three fundamental defects. First, it is not appli-

cable to a finite disturbance. With a finite disturbance, a

so-called stable solution based on linear stability may

not be always stable. Second, it may not be so relevant

for comparison with experiments. Because of the diffi-

culty in controlling disturbances in experiments, exper-

imental results of stability such as those in Matsson and

Alfredsson [10] and Wang and Cheng [12] are essentially

for finite random disturbances. Finally, linear stability

analysis provides no answer to the questions related to

the dynamic behavior of solutions, including how flows

approach a stable solution after a disturbance, what

happens to an unstable solution after a disturbance,

whether all unstable solutions at a given set of para-

meters respond to disturbances in the same way, and

whether disturbances lead an unstable solution to stable

one at the same parameter value. Clearly, a fully tran-

sient computation is necessary to examine dynamic re-

sponses of the multiple solutions to the finite random

disturbances. Such a computation is also capable of

capturing the phenomena related to the transition to

turbulence such as oscillation solution, periodic dou-

bling, intermittency, and chaotic oscillation.

In previous numerical studies [8,14,15], branch sta-

bility is often determined by stability of one point on the

branch. This is partly due to the fact that computation

of complete eigenvalue spectrum along solution bran-

ches is a computationally expensive process and partly

due to the assumption that stability of solutions along a

solution branch is unchanged without passing limit/bi-

furcation points in the literature. However, based on

bifurcation and stability theory, such a change in sta-

bility is possible. Therefore, a more detailed and careful

stability analysis is desirable to observe the gain and loss

of flow stability along solution branches without passing

limit/bifurcation points.

The present work is a relatively comprehensive study

on bifurcation structure and stability of multiple solu-

tions for laminar mixed convection in a rotating curved

duct of square cross-section (Fig. 1). The governing

differential equations in primitive variables are solved

for detailed bifurcation structure by a finite-volume/

Euler–Newton continuation method with the help of

bifurcation test function, branch switching technique

and parameterization of arc-length or local variable.

Transient calculation is made to examine the response of

every solution family to finite random disturbances.

Power spectra are constructed by the Fourier transfor-

mation of temporal oscillation solutions to confirm the

chaotic flow. We restrict ourselves to the hydrody-

namically and thermally fully-developed region and

two-dimensional disturbances. So far, a detailed 3-D

numerical computation of flow bifurcation and stability

is still too costly to conduct. A 2-D model is still useful

for a fundamental understanding of rotating curved duct

flows. However, our assumption of fully developed flow

limits our analysis to the one preserving streamwise

symmetry. There may be further bifurcation to flows

that breaks this symmetry and that cannot be found in

the present work.

2. Governing parameters and numerical algorithm

Consideration is given to a hydrodynamically and

thermally fully developed laminar flow of viscous fluid in

a square duct with streamwise curvature, spanwise ro-

tation, and wall heating or cooling at a constant heat

flux (Fig. 1). The geometry is toroidal and hence finite

pitch effect is not considered. The rotation can be posi-

tive or negative at a constant angular velocity. The duct

is streamwisely and peripherally uniformly heated or

cooled with a uniform peripheral temperature. The

properties of fluid, with the exception of density, are

taken to be constant. Usual Boussinesq approximation

is used to deal with the density variation.

Consider a non-inertial toroidal coordinate system

(R, Z, /) fixed to the duct rotating with a constant

angular velocity about O0Z0 axis, as shown in Fig. 1. We

may obtain the governing differential equations, in the

form of primitive variables (i.e. u, v, w, p, and h), gov-
erning fully-developed mixed convection based on con-

servation laws of mass, momentum and energy. The

boundary conditions are non-slip and impermeable,

streamwise uniform wall heat flux and peripherally

uniform wall temperature at any streamwise position.

The proper scaling quantities for non-dimensionaliza-

tion are chosen based on our previous experience [13].

The formulation of the problem is on full flow domain

without imposing symmetric boundary conditions to

perform a thorough numerical simulation. The readers

are referred to Yang and Wang [16] and Wang and

Cheng [13] for the details of mathematical formulation

of the problem.

The dimensionless governing equations contain five

dimensionless governing parameters: one geometrical

parameter r (the curvature ratio defined by a=Rc, the
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ratio of duct width/height a over the radius of the cur-

vature Rc, representing the degree of curvature), one

thermophysical parameter Pr (the Prandtl number,

representing the ratio of momentum diffusion rate to

that of the thermal diffusion), and three dynamical pa-

rameters Dk, L1 and L2 defined in Wang and Cheng [13].

The pseudo Dean number Dk is the ratio of the square

root of the product of inertial and centrifugal forces to

the viscous force and characterizes the effect of inertial

and centrifugal forces. L1 represents the ratio of the

Coriolis force over the centrifugal force, characterizing

the relative strength of Coriolis force over the centrifu-

gal force. L2 is the ratio of the buoyancy force over the

centrifugal force and represents the relative strength of

the buoyancy force. A positive (negative) value of L1 is

for the positive (negative) rotation. A positive (negative)

value of L2 indicates the wall heating (cooling). In the

present work, we set r ¼ 0:2 (typically used in cooling

systems of rotor drums and conductors of electrical

generators) and Pr ¼ 0:7 (a typical value for air) to study

the effects of three dynamical parameters on the multi-

plicity and stability. While results regarding the effects of

Dk and L1 are also available, we focus on the effects of

L2 at Dk ¼ 300 and L1 ¼ 28 in the present paper due to

limited space.

The governing differential equations are discretized by

finite volume method to obtain discretization equations.

The discretization equations are solved for parameter-

dependence of velocity, pressure and temperature fields

by the Euler–Newton continuation method with the

solution branches parameterized by L2, the arc-length or

the local variable. The starting points of our continua-

tion algorithms are the three solutions at Dk ¼ 300,

L1 ¼ 28 and L2 ¼ 0 from our study of the effects of Dk

and L1. The bifurcation points are detected by the test

function developed by Seydel [17,18]. The branch

switching is made by a scheme approximating the dif-

ference between branches proposed by Seydel [17,18].

The dynamic responses of multiple solutions to the 2-D

finite random disturbances are examined by the direct

transient computation. The readers are referred to Yang

and Wang [19] for the numerical details and the check

of grid-dependence and accuracy. The computations are

carried out on the Super Computer SP2 of The Univer-

sity of Hong Kong.

3. Results and discussion

3.1. Solution structure and flow/temperature fields

At r ¼ 0:02, Pr ¼ 0:7, Dk ¼ 300, and L1 ¼ 28, bi-

furcation structure is shown in Fig. 2 by varying L2 from
)20 to 70. The u velocity component at (0.9, 0.14) is used

as the state variable, enabling a clear visualization of all

solution branches. Fig. 2(a) shows the whole solution

structure form L2 ¼ �20 to 70. Although there are

only three solution branches labeled as AS1, AS2, and
S3, solution structure is very complicated within �156

L26� 8 (Fig. 2(b)). In this range, the direction of

buoyancy force is in negative R-direction while both

the centrifugal force and Coriolis force act in the posi-

tive R-direction, the amplitudes of centrifugal force and

Coriolis force are in same order of buoyancy force. Non-

linear counteraction of three forces generates a complex

solution structure.

If L26 � 14:5 or L2P 63:1, only one steady solution

branch (AS1) exits and no limit point is found (Fig. 2(a)).

Therefore, there is only one steady solution at each

specified value of L2. Typical flow fields and temperature

profiles within these two ranges are shown in Fig. 3. In

Fig. 3(a), secondary flow on AS1 at L2 ¼ �17:0 has 5-

pair of counter-rotating vortices which are symmetric

with respect to horizontal center plane. Among ten vor-

tices, eight of them (two counter-rotating vortices are in

the center region close to the outer wall, four vortices are

in the four corners and two small vortices are in the

center region of the duct) are called buoyancy-vortices

[13]. They mainly result from action of buoyancy forces

and are similar to the Dean-vortices [13] and Coriolis

vortices [13,20] due to the action of centrifugal forces and

Coriolis forces, respectively. The other two vortices lo-

cated in the center region still maintain the characteristics

of Ekman vortices. The buoyancy forces acting in neg-

ative R-direction are stronger than the centrifugal forces

and Coriolis forces acting in the positive R-direction,

resulting in the axial velocity peak and temperature peak

close to the inner wall (Fig. 3(a)). If L2 > 63:1, multi-

solution phenomenon disappears; only part of AS1 with

no bifurcation point and no limit point is found. The

typical solutions on various solution branch parts are

shown in Fig. 3(b). The solution shown in Fig. 3(b) is the

typical 2-cell solution with two Ekman vortices sym-

metrically distribute in the cross-section of the duct. By

comparing the streamwise velocity profiles and temper-

ature fields in Fig. 3(b) with those at L2 ¼ 0 in Yang [20],

it is observed that, while buoyancy force has less influ-

ence on temperature fields, two striking peaks of

streamwise velocity along the upper and lower walls are

formed due to its effect.

For a L2 value in �14:5 < L2 < 63:1, bifurcation

phenomenon occurs. Because of the complexity of so-

lution structure within the studied range of L2 values, it

is difficult to present flow structure and temperature

fields on each solution branch part. However, secondary

flows of 4 solutions at L2 ¼ �11:7 are shown in Fig. 4. It

is expected that these solutions can enable us to obtain

some insight of the flow structures of all the solutions

within �12:1 < L2 < �11:4. It should be noted that 39

solutions co-exist at L2 ¼ �11:7, the solutions shown in

Fig. 4 are only the typical flow patterns. For detailed

flow structures and temperature profiles at this para-
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meter, readers are referred to Yang [20]. At L2 ¼ �11:7,
three forces (centrifugal, Coriolis and buoyancy forces)

have the same order of magnitude. The non-linear

combination of the three forces not only leads to a

complicated solution structure, but also generates a

complicated structure of the secondary flow (Fig. 4).

3.2. Stability of multiple steady solutions

A relatively comprehensive transient computation

is made to examine the dynamic behavior and stability

of typical steady solutions with respect to four sets of

finite random disturbances with d ¼ 4%, 10%, 15%, and

Fig. 2. Solution branches (r ¼ 0:02, Pr ¼ 0:7, Dk ¼ 300, and L1 ¼ 28).
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40% respectively. Five types of dynamic responses are

identified. They are stable 2-cell steady solution, stable

multi-cell steady solution, periodic solution, symmetric-

breaking oscillation led by sub-harmonic (Periodic

doubling) bifurcation and temporal chaotic oscillation.

Although nearly all types of the physically realizable

solutions presented in the present work have already

been reported in Yang and Wang [19], some new phe-

Fig. 3. Flow and temperature fields (r ¼ 0:02, Pr ¼ 0:7, Dk ¼ 300, and L1 ¼ 28) (left––secondary flow, middle––streamwise velocity,

right––temperature).

Fig. 4. Typical secondary flow patterns at L2 ¼ �11:7 (r ¼ 0:02, Pr ¼ 0:7, Dk ¼ 300, and L1 ¼ 28).
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nomena of mixed convection motivate our further dis-

cussions. We find the co-existence of two types of tem-

poral oscillations at certain values of L2. A new route to

chaos, i.e., the sub-harmonic bifurcation, is also dis-

covered in the present study.

According to the dynamic responses to finite random

disturbances, seven sub-ranges are identified. To facili-

tate the discussion, some abbreviations are introduced.

Within �206 L26 70, possible physically realizable so-

lutions can be in the form of stable steady 2-cell solution

(S2), stable steady multi-cell solution (SM), temporal

periodic oscillation (P), temporal chaotic oscillation (C)

and temporal symmetric-breaking oscillation (SB). Fig.

5 details the ranges of these physically realizable solu-

tions. It is observed that three stable multi-cell steady

solutions (labeled as SM1, SM2, and SM3 in Fig. 5, re-

spectively.) co-exist at a specified value of L2 in

sub-range �14:5 < L2 < �13:6 and temporal periodic

solution co-exist with temporal chaotic solutions in sub-

range 12:1 < L2 < �11:5. We will describe the numeri-

cal simulation results within these seven sub-ranges in

detail in follows. The results presented in this paper are

those obtained from disturbance with d ¼ 10% unless

otherwise stated.

If L2 is less than )14.5 or larger than )10.2, random
disturbances lead all solutions on various solution sub-

branches to a unique stable steady solution. Fig. 6 typ-

ifies the responses of solutions to the finite random

disturbances within these two sub-ranges. In the figures,

the deviation of velocity components from their initial

steady values (u0, v0) (Fig. 6(a)) or velocity itself (u, v)

(Fig. 6(c)) is plotted against the time s at (0.9, 0.14),

(0.94, 0.1), and (0.96, 0.06) for L2 ¼ �15 and L2 ¼ 50,

respectively. We plot both u- and v-velocity components

for the first point (0.9, 0.14) while only u-velocity com-

ponent is shown for the last two points. To facilitate the

comparison, we use these four velocity components in all

figures illustrating dynamic responses of the multiple

solutions to the finite random disturbances. It is ob-

served that all deviation velocities vanish after a short

period of time.

Fig. 6(a) is a typical evolving process for L26�14:5.
At L2 ¼ �15:0, only one multi-cell steady solution has

been found. It is observed that all oscillations vanish

after a short period of time. The final state is multi-cell

steady state similar to that shown in Fig. 6(b).

If L2 > �10:2, solutions on sub-branch AS1s (labeled
in Fig. 2(a)) are the only stable ones. Fig. 6(c) shows the

typical evolution process of the perturbed steady solu-

tions on various sub-branches. At L2 ¼ 50, the steady

solution on the points a labeled in Fig. 2(a) are not

stable and the solution on the point c (Fig. 2(a)) is sta-

ble. As an example, Fig. 6(c) gives the dynamic response

of the steady solution on point a (at L2 ¼ 50). The

evolution process reaches the stable steady state quickly.

After the evolution process reaches steady state, sec-

ondary flow pattern is 2-cell state as shown in Fig. 6(d).

Within�14:5 < L2 < �13:6, multiple stable steady

solutions are revealed numerically. Fig. 7 illustrates the

dynamic responses of three different steady solutions at

L2 ¼ �14:0 to random disturbances. Dynamic evolution

in Fig. 7(a) uses sum of the solution on point a at

L2 ¼ �14:0 in Fig. 2(b) and the random disturbances as

the initial condition. It is observed that the disturbances

disappear after a short period of time. The final state is

the multi-cell state of Fig. 7(b). Fig. 7(c) is the dynamic

response of steady solution on point d at L2 ¼ �14:0 in

Fig. 2(b). It is observed that the dynamic evolution

reaches the steady state at s � 1:2. The flow and tem-

perature fields of the final steady state are the multi-cell

state shown in Fig. 7(d). Another stable steady solution

at L2 ¼ �14:0 is the solution on point e at L2 ¼ �14:0 in
Fig. 2(b). Fig. 7(e) shows the evolution process of this

solution. It clearly illustrates that the finite random

disturbances lead the solution on point e at L2 ¼ �14:0
in Fig. 2(b) return to the original state after a short

period of time. The secondary flow pattern of the final

evolution is shown in Fig. 7(f).

It should be pointed out that, in spite of three stables

steady solutions at L2 ¼ �14:0, only two stable steady

solutions co-exist in the range of �14:5 < L2 <�14:2.
At L2 ¼ �14:2, limit point AS12 marked in Fig. 2(b)

leads one of the stable solution sub-branch to disappear

for L2 < �14:2.
Within �13:66 L26�12:1, finite random distur-

bances lead the solutions on all solution branches to a

temporal periodic state. The extensive results of direct

transient calculation prove that, at certain value of L2,
temporal periodic oscillations are the only physically

realizable solution within �13:66 L26�12:1. The

typical dynamic evolution of solutions is shown in Fig.

8(a). The figure shows the evolution process of a steady

solution at L2 ¼ �12:1 to random disturbances. This

steady solution is on the same sub-branch with the point

a labeled at L2 ¼ �12:6 in Fig. 2(b) [labeled as point b at

L2 ¼ �12:1 in Fig. 2(b)].

Fig. 5. Possible physically realizable solutions (r ¼ 0:02, Pr ¼ 0:7, Dk ¼ 300, and L1 ¼ 28).
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Some typical secondary flow patters for Fig. 8(a) are

detailed in Fig. 8(b)–(g) within one period of s. Fig.

8(b)–(g) begin with the symmetric 12-cell secondary flow

pattern at s ¼ 0:964 and end with the similar secondary

flow pattern at s ¼ 1:029. It is observed that, the sec-

ondary flows change from symmetric 12-cell state to

symmetric 14-cell state gradually as s increases. While

the large changes are in central region of the cross-

section, some small changes are also on the forms of

buoyancy vortices close to the outer wall and in four

corners of the cross-section. Smaller magnitude of os-

cillation mentioned above (Fig. 8(a)) is due to the fact

that four velocity components shown in the figure are

located close to the outer wall.

Within �12:16 L26�11:5, random disturbances

lead the steady solutions on various solution sub-bran-

ches to two types of temporal oscillations. One is peri-

odic solution and another is chaotic oscillation. The

typical dynamic responses to finite random distur-

bance of steady solutions within �12:16 L26�11:5 are

shown in Fig. 9. Fig. 9 illustrates four temporal evolu-

tion processes at L2 ¼ �11:7. Different temporal solu-

tions are from the steady solutions on different

sub-branches perturbed by random disturbances. The

random disturbances lead the steady solution shown in

Fig. 4(a) to temporal chaotic oscillation (Fig. 9(a)) while

the dynamic evolution process of the steady solution

shown in Fig. 4(b) is temporal periodic oscillation

Fig. 6. Evolution of solution to stable steady solution (r ¼ 0:02, Pr ¼ 0:7, Dk ¼ 300, and L1 ¼ 28).
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(Fig. 9(b)). For steady solutions shown in Fig. 4(c) and

(d), the final states of two evolving processes shown in

Fig. 9(c) and (d) are also chaotic oscillation and periodic

oscillation, respectively. But temporal oscillations in Fig.

9(c) and (d) are different from those in Fig. 9(a) and (b)

in the way that both evolution processes in Fig. 9(c) and

(d) are very long before reaching final chaotic oscillation

or periodic oscillation states.

If the physically realizable solution is in chaotic os-

cillation as shown in Fig. 9(a), flow field also oscillates

Fig. 7. Dynamic responses of the steady solutions at L2 ¼ �14 to finite random disturbances: Co-existence of three stable steady multi-

cell states (r ¼ 0:02, Pr ¼ 0:7, Dk ¼ 300, and L1 ¼ 28).

T. Yang, L. Wang / International Journal of Heat and Mass Transfer 46 (2002) 613–629 621



chaotically with time s. Fig. 10 shows some secondary

flow patterns for the case of Fig. 9(a). First secondary

flow pattern in Fig. 10(a) is at s ¼ 0:786 and last one in

Fig. 10(f) is at s ¼ 0:833.

Fig. 8. Dynamic response of solution b at L2 ¼ �12:1 labeled in Fig. 2(b) to finite random disturbances: periodic oscillation and

typical secondary flow patterns in one period (period ¼ 0:065; r ¼ 0:02, Pr ¼ 0:7, Dk ¼ 300, and L1 ¼ 28).
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For periodic oscillation at L2 ¼ �11:7 (Fig. 9(b)),

secondary flow patterns have the similar multi-cell forms

as those in Fig. 8(b)–(g). Within one period of time, the

multi-cell secondary flows change in the same way as

that for periodic solution at L2 ¼ �12:1 discussed

above.

Fig. 9. Dynamic responses of the solutions at L2 ¼ �11:7 to finite random disturbances: co-existence of periodic and chaotic oscil-

lations (r ¼ 0:02, Pr ¼ 0:7, Dk ¼ 300, and L1 ¼ 28).
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The essential differences between two types of oscil-

lations shown in Fig. 9(a) and (b) are discovered by

comparing the secondary flow patterns in Fig. 10 with

those in Fig. 8(b)–(g). First, secondary flow patterns of

periodic oscillation maintain the symmetric multi-cell

forms; secondary flow patterns of chaotic oscillation

change between symmetric and asymmetric patterns

(Fig. 10). Second, secondary flow patterns of periodic

oscillation are complex symmetric multi-cell. At least

twelve vortices are observed from Fig. 8(b)–(g). But

secondary flow patterns of chaotic oscillation are rela-

tive simpler. Maximal eight vortices are generated (Fig.

10(a) to (f)). In addition, in the case of chaotic oscilla-

tion, only buoyancy vortices close to the outer wall are

observed. But in the case of periodic oscillation, buoy-

ancy vortices are found everywhere in the duct cross-

section. Third, in the case of periodic oscillation,

significant changes are in the central region of the cross-

section. But in the case of chaotic oscillation, buoyancy

vortices near the outer wall changes significantly along

with the time, two Ekman vortices in the central region

maintain approximately unchanged during the chaotic

oscillation.

If L1 increases further from L2 ¼ �11:5, the periodic
solution disappears. Chaotic oscillation exists uniquely

in sub-range of �11:56 L26�10:4. The typical dy-

namic responses to finite random disturbance of steady

solutions within this sub-range are shown in Fig. 11.

By comparing Fig. 11 with chaotic oscillations shown

in Fig. 8(a), it is not difficulty to observe that the

chaotic oscillation within �11:56 L26�10:4 has the

same characteristic of that in sub-range �12:16 L26
�11:5.

As discussed above, the physical realizable solu-

tion is chaotic oscillation within �11:56 L26�10:4. If
L2 > �10:2, steady stable solution is found. The transi-

tion from chaotic oscillation to the stable steady solution

takes place in sub-range �10:4 < L26�10:2. Temporal

oscillation with intermittency and the sudden shift from

the stable steady solutions to the chaotic solutions that

Fig. 10. Typical secondary flow patterns of chaotic oscillation for the case in Fig. 9(a) (r ¼ 0:02, Pr ¼ 0:7, Dk ¼ 300, L1 ¼ 28, and

L2 ¼ �11:7).
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was reported in [16,20] are not found. An asymmetric

mode of oscillation led by sub-harmonic bifurcation is

observed within �10:4 < L26�10:2. It is confirmed

that sub-harmonic bifurcation serves the way for onset of

chaos. Since the transitional oscillation is important to-

wards chaotic oscillation, detailed observation of tem-

poral solutions is made within �10:4 < L26�10:2. Fig.
12 shows symmetric/asymmetric mode of oscillation at

four different value of L2. It demonstrates that, as L2
decreases from )10.2, temporal oscillation changes from

periodic to non-periodic and develops chaos gradually.

The corresponding power spectra in Fig. 12 are shown in

Fig. 13. The observed sequence of instabilities is as fol-

lows: Hopf bifurcation leads to the transition from stable

steady solution to the temporal periodic oscillation at

L2 ¼ �10:2 (Figs. 12(a) and 13(a)). It should be noted

that the frequency labeled as f1 in Fig. 13(a) appears for

all the velocity components, pressure and temperature at

all points in the cross-section. The amplitudes of the

temporal oscillation are different for the velocity com-

ponents; pressure and temperature at various positions,

but the frequency are invariant. At L2 ¼ �10:25, a sec-

ond frequency labeled as f2 in Fig. 13(b) appears in the

spectrum (throughout the whole cross-section) as show

in Figs. 12(b) and 13(b). By comparing the values of f1
and f2 in Fig. 13(b), it is not difficult to obtain that

f2 ¼ ð1=2Þf1, indicating sub-harmonic bifurcation or

period-doubling bifurcation. As L2 decreases further, at

L2 ¼ �10:30, a second sub-harmonic bifurcation dou-

bles the period of temporal oscillation again and third

frequency labeled as f3ðf3 ¼ ð1=4Þf1Þ (Fig. 13(c)) ap-

pears. From Fig. 13(c), it is observed that the peaks at f2
and f3 are relatively weak, but they grow continuously as

L2 decreases. At L2 ¼ �10:35, the oscillations become

non-periodic, the spectrum shows many closely spaced

peaks (Fig. 13(d)). The broadband of the spectra indi-

cates the onset of chaos.

The onset of chaos through the way of sub-harmonic

bifurcation was observed experimentally in Gollub and

Benson [3] for the problem of thermal convection be-

tween flat horizontal plates. Lipps [1], McLaughlin and

Orszag [2], and Clever and Busse [21] made numerical

simulations for the same problem. Some of the temporal

oscillation modes reported appear identical with the

mode in the present work. Obviously, the problem

studied by Gollub and Benson [3], Lipps [1], McLaughlin

and Orszag [2], and Clever and Busse [21] are different

from that in the present work. But the two problems

share a common ground: both of them concern the flows

under the influence of buoyancy force. The strong

resemblance of the ways to chaos between the two

problems suggests that the buoyancy forces enhances

sub-harmonic bifurcation and suppress the intermit-

tency.

4. Concluding remarks

The numerical method is employed to study 2-D

hydrodynamically and thermally fully developed flow

and heat transfer in rotating curved square ducts. Al-

though flow and heat transfer occurring in real rotating

curved ducts may be 3-D. A 2-D model is still useful for

a fundamental understanding of rotating curved duct

flows.

The governing differential equations are discretized

by finite volume method. The discretization equations

are solved by Euler–Newton continuation by using L2,
arclength or local variable as the control parameter.

Fig. 11. Dynamic response of the solution on point c at L2 ¼ �11:4 labeled in Fig. 2(c) to finite random disturbances: chaotic os-

cillation (r ¼ 0:02, Pr ¼ 0:7, Dk ¼ 300, L1 ¼ 28, and L2 ¼ �11:4).
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Bifurcation point detection and the branch switching

technique described in Seydel [17,18] are used to unfold

various solution branches. Although only three steady

solution branches are found within �20 < L2 < 70, the

Fig. 12. Dynamic response of the solution to finite random disturbances: symmetric-breaking oscillation (r ¼ 0:02, Pr ¼ 0:7,

Dk ¼ 300, and L1 ¼ 28).
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very complicated solution structure exists within �14 <
L2 < 10 due to large number of limit points and bifur-

cation points in this region.

On different steady solution branches, steady

flow and temperature fields have different structures. 2-

to 14-cell symmetric/asymmetric flows are found.

Fig. 13. Power spectra of the temporal series shown in Fig. 12 (r ¼ 0:02, Pr ¼ 0:7, Dk ¼ 300 and L1 ¼ 28).
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Complicated structure of solutions and multi-cell

flows within �14 < L2 < 10 forecasts the onset of in-

stabilities.

Dynamic responses of steady multiple solutions to

finite random disturbances are examined by direct

transient computation. Stability of solutions on various

solution branches changes as value of L2 changes. Five

types of physically realizable solutions are identified in

seven sub-ranges of L2. The first sub-range is �206

L26�14:5, where finite random disturbances lead only

steady solution at any fixed L2 to a stable multi-cell

steady state. Within �14:5 < L1 <�13:6, multiple stable

steady solutions are found. There are two or three stable

multi-cell steady solutions at fixed value of L2 (de-

pending on the value of L2). Third sub-range covers the

range �13:6 < L26�12:1 where all steady solutions

evolve to temporal periodic solution. In fourth sub-

range (�12:16 L2 < �11:50), two types of temporal

oscillation co-exist. Finite random disturbances lead

some steady solutions to a periodic oscillation and other

solutions at the same value of L2 to a chaotic oscillation.

Fifth sub-range is from L2 ¼ �11:50 to )10.4 where all

the solutions respond to finite random disturbances in

the form of chaotic temporal oscillation. Sixth sub-range

(�10:4 < L26�10:2) serves as the transition range

from stable steady state to chaotic oscillation, where

sub-harmonic bifurcation leads the temporal oscillation

from periodic at L2 ¼ �10:2 to symmetry-breaking os-

cillation at L2 < �10:2. In last sub-range L2 > �10:2,
one solution branch becomes stable again and stable

steady solutions become the 2-cell state as L2 increases

from L2 ¼ �10:1 to 70.

The complicated instability characteristics summa-

rized above suggest that flows studied here are in the

transition region from laminar to turbulent flows. Co-

existence of different types of stable solutions (physical

realizable solutions) implies that, when flow is in such

transition region, the flow structure is very complicated

and they may change in different ways in time. At the

specific values of flow parameters, the flows may have

different features, i.e. periodic oscillating or chaotic os-

cillating flows.
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